

Affiliated to University of Calicut, U.O.No. 2436/2013/CU (Managed by Sree Paramekkavu Educational, Cultural and Charitable Trust) MLA Road, Punkunnam, Thrissur 680 002. Ph : 0487 2960800, 9961068618 E-mail : paramekkavucas@yahoo.in, Website : www.paramekkavuartsandsciencecollege.com

PARAMEKKAVU COLLEGE OF ARTS AND SCIENCE

COURSE OUTCOME, PROGRAMME OUTCOME, PROGRAMME SPECIFIC OUTCOME, PROGRAMME EDUCATIONAL OBJECTIVES

Affiliated to University of Calicut, U.O.No. 2436/2013/CU (Managed by Sree Paramekkavu Educational, Cultural and Charitable Trust) MLA Road, Punkunnam, Thrissur 680 002. Ph : 0487 2960800, 9961068618 E-mail : paramekkavucas@yahoo.in, Website : www.paramekkavuartsandsciencecollege.com

DEPARTMENT OF ELECTRONICS

BACHELOR OF SCIENCE IN ELECTRONICS **PROGRAMME OUTCOME:**

PO1	Acquire the ability to apply the basic principles of logic and science to thoughts, actions and interventions.
PO2	Perceive knowledge as a comprehensive, interrelated and integrated faculty of the human mind.
PO3	Generate hypothesis and articulate assent or dissent by employing both reason and creative thinking.
PO4	Develop the ability to chart out a progressive direction for actions and interventions by learning to recognize the presence of hegemonic ideology within certain dominant notions.
PO5	Develop self-critical abilities and the ability to view positions, problems and social issues from plural perspectives.
PO6	Participate in nation building by adhering to the principles of scientific temper, sovereignty, socialism, secularism, democracy and the values that guide a republic.
PO7	Develop gender sensitive attitudes, environmental awareness, the ability to understand and resist various kinds of discriminations and empathetic social awareness about various kinds of marginalization.
PO8	Understand the issues related to the current environmental problems and apply the principles of science for a sustainable development in an interdisciplinary manner.
PO9	Develop communication skill in English and local languages through different media.
PO10	Learn to articulate analysis, synthesis, and evaluation of situations and themes in a scientific manner.

Affiliated to University of Calicut, U.O.No. 2436/2013/CU (Managed by Sree Paramekkavu Educational, Cultural and Charitable Trust) MLA Road, Punkunnam, Thrissur 680 002. Ph : 0487 2960800, 9961068618 E-mail : paramekkavucas@yahoo.in, Website : www.paramekkavuartsandsciencecollege.com

PROGRAMME SPECIFIC OUTCOME: (B.SC. ELECTRONICS)

PSO1	Understand the basic principles of program development by identifying and formulating problems and integrate resources to decisions using the problem-solving approach
PSO2	Understand data-based reasoning through translation of data into abstract concepts using computing technology-based tools and develop real life applications
PSO3	Understand and recognize different value system and the moral dimensions of software development and applications and their outcomes and accept the responsibility for them
PSO4	Design web applications by understanding the global perspective .and make meaning of the world by connecting people ideas, media and technology.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1	Technical knowledge and skills in electronics.	
PEO2	Problem-solving abilities using engineering principles.	
PEO3	Design and implementation of electronic systems.	
PEO4	Commitment to lifelong learning and career development	

Affiliated to University of Calicut, U.O.No. 2436/2013/CU (Managed by Sree Paramekkavu Educational, Cultural and Charitable Trust) MLA Road, Punkunnam, Thrissur 680 002. Ph : 0487 2960800, 9961068618 E-mail : paramekkavucas@yahoo.in, Website : www.paramekkavuartsandsciencecollege.com

COURSE OUTCOMES: B.SC. ELECTRONICS

Semester 1			
Core/Common/ Complimentary	Course Code & Name of Course,	Course Outcomes	
Core	ELE1B01 - Basic Electronics and Network Theorems	 Understand basic electronic concepts and components, including voltage, current, resistance, and passive components. Apply fundamental circuit theorems and laws (KVL, KCL, Thevenin, Norton) for analyzing electrical circuits. 	
		 Understand the properties and behavior of semiconductors, including PN junction diodes and special diodes. Comprehend the operation and abarentarizing of PLTa EETa 	
Complementary	ELE1C01 - Electronic Devices	 characteristics of BJTs, FETs, UJTs, and SCRs. 1. Identify and classify electronic components, including resistors, capacitors, and inductors. 2. Explain the operation of light- sensitive devices like LDRs, LEDs, and LCDs. 3. Understand semiconductor fundamentals and diode operations, including PN junction and zener diodes 4. Explain the operation of light- sensitive devices like LDRs, LEDs, and LCDs. 5. Analyse BJT configurations, characteristics, and use transistors as switches. 	
Semester 2			
Core	ELE2B02- Electronic Circuits	 To equip the students with basic components in electronics, identifying and testing them To learn fundamentals of electronics To learn the circuit assembling 	

		4. To study circuit troubleshooting
		5. To equip the students with basic components in electronics, identifying and testing them
Complementary	ELE2C02 – Electronics Circuit	 Design rectifier circuits and voltage regulators, ensuring efficient power conversion and stable output. Analyze and design BJT biasing circuits and amplifiers, optimizing for desired performance metrics like gain and stability. Evaluate feedback amplifier configurations and design power amplifiers, considering efficiency and distortion characteristics. Design and troubleshoot oscillator circuits and utilize timer ICs for precise timing applications, ensuring reliable operation and functionality.
	Semester 3	
Core	ELE3B05 – Digital Electronics	 Master number systems, digital codes, Boolean algebra, and logic gates Analyze TTL, CMOS, ECL logic families; design combinational circuits. Implement multiplexers, flip- flops, shift registers, and popular IC applications. Design counters, understand IC applications, and ADC/DAC principles. Master number systems, digital codes, Boolean
Complementary	ELE3C04 – Digital Electronics	algebra, and logic gates1. Gain proficiency in converting between number systems and codes, performing arithmetic operations, and analysing logic gates using Boolean algebra2. Design and implement combinational logic circuits

		 using SOP, POS, and Karnaugh map minimization techniques. Implement multiplexers, demultiplexers, adders, subtractors, encoders, and decoders. 3. Design and construct sequential logic circuits including various flip-flops (S- R, J K, T, D), registers, counters (synchronous and asynchronous), and shift registers.
		 4. Understand the operation and application of different types of memories (ROM, RAM - static and dynamic, PROM, EPROM, EPROM, EAPROM) in digital systems. 5. Analyse BJT configurations, characteristics, and use transistors as switches.
		1. Understand various statements, data types and functions in Python
Common	A11– Python Programming	2. Develop programs in Python programming language
		3. Understand the basics of Object- oriented programming using Python
		4. To know about backend processing.
		1. Explain resistance, inductance and capacitance transducers.
		2. Perceive the concepts of temperature transducers.
Common	A12-Sensors and Transducers	3. Perceive the concepts of level transducers and pressure transducers
		4. Explain flow transducers, electromagnetic transducers, radiation sensors and sound transducers

		1. Explain resistance, inductance and capacitance transducers.
Common	A14 Sensors Transducers	2. Perceive the concepts of temperature transducers.
		3. Perceive the concepts of level transducers and pressure transducers
		4. Explain flow transducers, electromagnetic transducers, radiation sensors and sound transducers
	Semester 4	
		1. Understand operational amplifier configurations and applications.
C.	ELE4B06 – Analog Integrated Circuits	2. Design and analyze filters and waveform generators.
Core		3. Utilize comparators and Timer 555 in various applications.
		 Comprehend VCO, PLL, and voltage regulators' operation and applications.
		 Explain basic electronic communication systems and amplitude modulation (AM) principles.
		2. Understand frequency and phase
Complementary	ELE4C05 – Communication Electronics	3. modulation, and compare AM, FM, and PM.
		4. Describe pulse analog modulation techniques and pulse code modulation (PCM).
		 Analyze digital carrier modulation techniques, including ASK, FSK, PSK, BPSK, and QPSK.
		1. To understand digital logic fundamentals, including logic
Contra	A14 - Microprocessors	gates, Boolean algebra, combinational circuits, and
Common	Architecture and Programming	students to design.
		 To knowledge to analyze and design sequential circuits using various flip-flops, registers, and

		counters for applications requiring memory and state manipulation.
		3. To know about fundamental of a computer, instructions sets, registers, and control mechanisms, enabling you to understand how programs are executed and interact with
		 4. The control unit's design using microprogramming, explain organization with various register structures, instruction formats, and addressing modes, and get know about how instructions are fetched, decoded, and executed.
		5. To about the advanced memory management techniques, explore various I/O interfaces and data transfer protocols, and to understand how data efficiently flows between the processor, memory, and peripheral devices.
		 Understand digital and analogsignal characteristics, transmission, and processing principles Understand the basics and principles of multiplexing in
Common	A13 – Data Communication & Optical Fibers	communication systems.3. Understand the role of DLC in ensuring reliabledata transmission within communication networks.
		 Understand fundamentals of optical fiber communication and identify and explain optical sources and detectors.
	Semester 5	
Core	ELE5B10 – Electromagnetic Theory	 Apply vector operations, theorems, and transformations in diverse mathematical contexts. Analysed solve electrostatic problems using Gauss's law and been domesen bid
		boundary conditions.

		3. Evaluate magnetic fields	
		currents, and their interactions	
		using appropriate physical laws.	
		4. Understand Maxwell's equations,	
		wave propagation, and antenna	
		fundamentals comprehensively	
		1. Understand the architecture and	
		internal organization of the 8051	
		microcontrollers.	
		2. Master the 8051instruction set	
		and addressing modes for	
	ELE5D11 Microcontroller	efficient programming.	
Core	& Interfacing	3. Implement and manage timers,	
	& Interfacing	counters, and various interrupts	
		in the 8051 microcontrollers.	
		4. Develop and debug embedded	
		applications using Arduino and	
		its IDE, interfacing various	
		sensors and peripherals.	
		1. To Apply Ohm's Law,	
		Kirchhoff's Laws (Voltage and	
		Current Laws), and other basic	
		circuit laws for analysis.	
		2. Analyzing transient responses to	
		various input signals and	
		predicting and interpreting	
		steady-state behavior.	
		3. To equip students with the	
Core	ELE5B12 - Network	theoretical knowledge, analytical	
	Theory	skills, and practical experience	
		necessary to understand, analyze,	
		and design AC circuits	
		effectively.	
		4. Analyze, design, and utilize	
		series and parallel RLC circuits	
		for resonance applications, as	
		well as to understand and	
		implement various types of filters	
		in electronic systems.	
Semester 6			
		1. Understand AM spectrum, power	
		relations, and AM generation	
Core	EL E6B13	methods like DSBSC and SSB.	
0010	Communication System	2. Study FM theory, noise	
		considerations, and	
		generation/detection methods	
		using direct and indirect methods.	

		 3. Explore radio receiver types (TRF, superheterodyne), propagation phenomena (ground wave, ionospheric), and receiver performance factors. 4. Learn PAM, PWM, PPM, TDM, FDM, CDMA, and digital modulation techniques.
Core	ELE6B14 – Principles of DSP	 Understand various types of signals and their math Fourier, and Z transforms. Classify systems and comprehend their properties, transfer functions, and convolution methods. Understand and compute the DFT and its relationship with the Z transform, including FFT algorithms. Design and realize digital filters (FIR and IIR) and understand their properties and implementations.
Core	ELE6B15 - Microwave Theory and Techniques	 To equip the students with basic understanding of Microwave theory and techniques Learn about microwave components like waveguides, antennas, and transmission lines. To equip students with the theoretical knowledge, analytical skills, and practical experience necessary to understand, analyze, and design AC circuits effectively. Analyze, design, and utilize series and parallel RLC circuits for resonance applications, as well as to understand and implement various types of filters in electronic systems.
Elective	ELE6B16a – Optical Communication	 Explain optical communication principles and fiber characteristics, including critical angle and TIR. Understand signal degradation mechanisms in optical fibers and bandwidth limitations. Describe optical fiber couplers, splicing techniques, and point- to-point transmission systems.

	4.	Analyze optical sources,
		detectors, and amplifiers,
		including LEDs, lasers, and
		photodiodes.